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Abstract A theoretical and numerical analysis of the formation of a localized neck in a biaxially
stretched sheet is presented. A time-independent constitutive law is assumed to be incrementally
non-linear as suggested by micromechanical studies of the elastoplastic deformation of poly-
crystalline metals. The incipient width of a necking band in an infinitely thin perfect sheet of 4 time-
independent material is found here to have a well-defined initial value. proportional to the in-plane
sheet dimension. During subsequent post-critical deformation the boundary of the necking band
moves with respect to the material until the transition to localized necking is completed. These
conclusions are derived on a theoretical route from the condition of stability of the post-bifurcation
deformation process and are confirmed by the numerical analysis performed for a sheet of finite
thickness.

I. INTRODUCTION

According to Hills™ (1952) theory. localized necking in thin sheets in the plane stress
idealization corresponds to a discontinuity of velocity. or alternatively to a vanishingly thin
band where the strain rate is infinite relative to that outside the band. In biaxially stretched
sheets the localized necking can be preceded by a transitory (quasi-stable) process of
concentration of deformation [cf. Marciniak (1978)]. It is the purpose of this paper to
provide a theoretical and numerical analysis of that process in a sheet of finite in-plane
dimensions. when in-plane diffuse necking is disregarded or excluded by kinematic bound-
ary conditions. A novel feature of the present study is that the width of the zone where the
strain 1s concentrating can be determined and can decrease gradually in time.

For the plane stress time-independent model of a perfect sheet and in the circumstances
to be specified later. the transitory process starts at the bifurcation point when the linearized
equations of continuing equilibrium loose ellipticity. The time-independent model with no
intrinsic length variable has been regarded as providing an undetermined or vanishing
width of the subsequently forming localization band. Contrary to that widespread opinion,
it will be shown below that the incipient width of the necking band (or bands) can be
calculated. being proportional to the in-plane dimension of the sheet. During further
stretching, the boundary of the necking band need not be fixed but can propagate with
respect to the material until the transition to localized necking is completed.

There are two essential ingredients of the theory used to obtain those results. First, the
time-independent incremental constitutive law for an elastic—plastic material is not restricted
to have only two linear branches corresponding either to loading or to unloading as in the
classical elastoplasticity. but is allowed to admit an arbitrarily non-linear velocity-gradient
potential. This ts in accord with micromechanical studies of elastoplastic behaviour of
polyerystalline metals (Hill. 1967 : Hutchinson, 1970) which predict the existence of a non-
linear transitory range in the stress- or strain-rate space between the constitutive cones of
“total” loading and elastic unloading. associated with formation of a vertex on the yield
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surtace. If the classical elastoplastic model with a smooth yield surface is used then unreal-
istically high values of the strains at the onset of localized necking under kinematically
controlled biaxial stretching are obtained. unless sufficiently strong initial imperfections are
introduced as in the MK-approach (Marciniak and Kuczynski. 1967). On the other hand.
Stoéren and Rice (1973) have demonstrated that the use of the total loading moduli at a
vield surface vertex can reduce the predicted critical strains at the onset of localization to
the experimentally observed level without the need of appealing to imperfections.™ To
study subsequent development of a necking band. the non-linear range of the incremental
constitutive law has to be specitied. Christoffersen and Hutchinson (1979) have applied
their phenomenological model of the clastoplastic response at a yield surface vertex., known
as the J. corner theory of plasticity. They used the MK-approach and assumed that the
straining history outside the band is uniform and given independently of the necking
process.

Here. the interaction between the deformation inside and outside a necking band is
not disregarded. Under the assumptions of plane stress and after reducing the problem to
one dimension. the bifurcation theory predicts an inherent indeterminacy in the localization
process. As discussed in Section 3. infinitely many incremental solutions associated with
different band width evolution cuan exist at every stage of the post-critical deformation.
including the critical instant. all the solutions being correct from a mathematical point of
view. However. they need not to be equally correct physically. The actual deformation
process must in some sense be srable in order to be realizable in a physical system. As the
second essential ingredient of the theory used here, we shall apply the cnergy criterion
of instability of a deformation process. formulated by Petryk (1985) under the general
assumptions of Hill's (1939. 1978) theory of bifurcation : justification of the criterion has
been given by Petryk (1991, 1992). Petryk and Thermann (1992) have shown how the
criterion can be used in numerical calculations to select the possibly stable post-bifurcation
branch: the narrower concept of instability of cquilibritun is known to be insufficient for
this purpose. In the present paper the criterion is used o generate an additional equation
which removes the aforementioned indeterminacy of post-critical deformation.

In a perfect sheet of finite thickness. the necking can start without loss of cllipticity of
the governing (linearized) equations. Contrary to the plane stress case. the post-bifurcation
process of strain concentration can be determined numerically in a straightforward manner
so long as local (surface or material) instabilities do not come into play. In Section 4 a
comparison is made between the results of finite element calculations for a finite sheet
thickness and the plane stress results based on the stubility condition. As a necessary
preliminary step to a future analysis of more complex boundary conditions. the idealized
problem with the deformations being uniform in the direction of the smaller principal
stretch has been considered. The material has been assumed to obey the finite strain version
of the J, corner theory of plasticity so that a comparison can also be made with the previous
calculations done by Christoffersen and Hutchinson (1979).

2. FORMLU LATION OF THE PROBLEM

Consider a plane sheet in the rectangular Cartesian coordinates (v, \», x3) such that
the xi-axis 1s orthogonal to the sheet plane (Fig. 1). The sheet, initially homogeneous and
isotropic in the plane (v,. x,). 1s subject 1o quasi-static biaxial stretching in the x, and x.
directions. We assume that normal velocities and zero shear tractions are prescribed over
the sheet end planes. x, = —/, x, = /and v. = 0, x, = /.. say. so that the averaged values
D,. D- of Eulerian strain rates D,.. .- are given. Since the material is time-independent,
only their ratio p = D.. D, is relevant: we assume that 0 < p < |. The sheet surface is
traction free. The ratio of a (non-uniform) current sheet thickness £ to / is assumed to be
small (infinitesimal in Section 3 but fnite in Section 4): the dimension /. will have no
significance.

“ Recenths. Hill (1991) suggested that ansotropic hardening may be the key to understanding localized

necking without mvoking vield vertices or Muarcimak grooves. at least in certain circumstances. [t is not evident.
however. how to apply this idea to the problem of kinematically controlled stretching examined here.
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Fig. 1A strewched sheet in the current contiguration

In Appendix A it 1s shown that so long as the linearized rate equations of continuing
in-plane equilibrium under plane-stress conditions are strongly elliptic and of constant
coeflicients then they adnut only one uniform solution to the boundary value problem
specified above. The primary bifurcation mode Av at the instant of ellipticity loss does not
involve variations along the x.-axis, at least for the coefficients determined from the J,
deformation theory of plasticity. Accordingly. the analysis of non-uniform deformations
shall be restricted here to a generalized plane problem in the (x,, x;) plane, all quantities of
interest being independent of v, (Fig. 1) : this is also in accord with the common experience
that the localized neck forms normal to the direction of the larger stretch. The tangential
components £... F.; and o¢-,. g,. of the deformation gradient F and Cauchy stress @,
respectively, are assumed to vanish identically. and D-- always coincides with given D,.

Constitutive rate equations for a time-independent material undergoing isothermal
deformation can be written as follows (with the summation convention adopted for repeated
subscripts) :

1

to=t (DAY = LD A#VD.. L=t D ()

where 1, are components of the corotational (Zaremba Jaumann) flux of the Kirchhoff
stress T = det(F)e. and the symbolic parameter .# denotes the current state of the material,
dependent on the prior deformation history. Arbitrary “hardening™ or “softening’ charac-
teristics are allowed. Taking for simplicity the current configuration as the reference, it will
be convenient to rewrite eqn (1) as

S.=SAF. #)y=C,(D.#)F.,. C, =S,/CF (2)
(..//A/ = L.,.\ - ;(”M’.r +(7;/\(5,,*+0',,'()-,A - (f,,(ﬁ,L). F,, = D,/+Q,,. (3)

Here. S, are components of the first Piola-Kirchhott stress tensor (i.e. of the transposed
nominal stress tensor). F coincides with the velocity gradient. a dot over a symbol denotes
the forward rate. d,; is the Kronecker delta and € is the material spin.

We shall assume. following Hill (1959. 1978). that the constitutive rate equations (2)
admit a velocity-gradient potential (continuously differentiable and homogeneous of degree
two in F). viz.

e e Ce

R

so that
Cur=Cu Ly =L, (5)
The material “stiffness”™ moduh € .. 1.,,., can depend on the direction of D in a non-linear

and piecewise continuous manner. and are obviously undefined for D =0 unless U is
quadratic in F. The equations of classical plasticity with a smooth yield surface and the
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normality flow rule represent the special case of eqn (4) with L, being constant on each
side of a hyperplane in D-space.

3. PLANE STRESS IDEALIZATION

Throughout this section we make use of the additional simplifying assumption of the
plane stress state being uniform across the sheet thickness A(x,) « /. We assume that F,,-
and S, for i # jcan be taken as zero identically, and work with the principal values D, and
S;. The strain rate D, at given .# is assumed to be a single-valued function of (D,, D,),
determined from the condition S; = 0 (provided Cy::; # 0). The plane stress specialization
of the constitutive potential L is defined by

C(D,.Ds.#) = U(D,.D..D(D,, D>, #), H). (6)

with constitutive rate equations

S =0UcD, =CiD,. D, #)D, (7
and plane stress moduli
. e o
¢, = ‘pep. Ci—CiCy Covo Lhk=1.2, Cy = Cpyyi(nosum). (8)

All quantities of interest are now independent of v, and x;. At a given stage of non-
uniform deformation of the sheet. # may formally be replaced by x,; in the formulae
below the obvious dependence on v, will not be indicated explicitly to simplify the notation.
Without loss of generality we can assume that the deformations are symmetric with respect
to the point v, = 0 where the velocity r(0) = 0. A guasi-static solution to the rate boundary
value problem is represented by a velocity function 2, : [0, /] — R, assumed to be continuous
and piecewise continuously differentiable. The set of (kinematically admissible) functions
', which satisfy the kinematical boundary conditions :

Py =0. ¢, () =1D, %)

will be denoted by 7 | A veloeity solution is a function ¢, € ¥, such that on substituting
D =vr,=drydy and D.=D. into eqn (7) it satisfies the condition of continuing
equilibrium

(ha.)" = const<> /S, = const for x,€(0,/); (10)
it is recalled that the current configuration is taken as reference.

3.1, Stubility condition

According to the energy criterion of plastic instability (Petryk, 1985, 1991) specified
for the present problem with zero potential energy of external loads, a solution v{ can
correspond to a stable deformation path only if it minimizes the second-order work func-
tional among all kinematically admissible velocity functions, viz.

~

‘ U .Daoyhdy, = | Ut D-)hdx, foreveryrv,ef . (1

o U o i

On the other hand. any solution ¢,. stable or not. assigns to the left-hand functional a
stationary value in 7 | [cf. Hill (1959)].

The integral condition (11) 1s easily shown to be equivalent to the following pointwise
condition :
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ADV.D: D=0 for every D, and atany v, €(0./) (12)

provided x, 1s a point of differentiability of ¢|. Equation (12) is the classical Weierstrass
condition of the calculus of variations for the minimization problem (11}. The expression

DD Dy =U0D,.Dy—C(D).Dyy—S' (D, —DY) (13)

defines the Weierstrass function associated with ' (-. J.. # ). representing the excess of U
at D, over its linear approximation constructed at D'. Here and in the following. the
quantities distinguished by the superscript zero. are associated with ¢,

In Appendix A the circumstances are specified in which along a uniform deformation
path the uniqueness of a velocity solution and the incremental stability of deformation in
the sense of eqn (11) are lost exactly at the point of ellipticity loss determined for the tangent
moduli. that is, when a material state # "' is reached such that the /inearized bifurcation
condition

Co(D,.D.# )y =0 (14)

is met : this is the critical point examined by Stéren and Rice (1975) in the case of biaxial
stretching.

The post-critical solution for the plane stress problem is not determined by the kine-
matic and static conditions alone. To select among infinitely many mathematically admiss-
ible alternatives the solution of physical meaning. we shall require the stability condition
(12) to hold along the deformation path. This is the essence of the new approach developed
here. Some details of the analysis are given in Appendix B more essential implications are
listed below.

3.2, The incipient width of necking band

Assume for simplicity that D at .# " corresponds to continuing proportional straining
and represents the axis of the constitutive cone of total loading within which the moduli
are independent of D. The total loading cone is defined by ¢ < 6,. where 0, is the cone
angle and ¢ > 0 is an angle (in general. defined in terms of a scalar product generated by
an arbitrary positive-definite fourth-order tensor) between D and D.

Denote by ¢ the angle between the plane strain rate (D;) =(1.0. D;(1.0)) and (D). It
is found that if ¢ < ¢, at .#~"" then. as a rule, any quasi-static continuation of the solution
(for a vanishingly thin sheet) violates the requirement of stability of equilibrium and is thus
unlikely to have a physical meaning.

Suppose thus that in the uniform critical state # =" satisfying eqn (14) we have ¢ > 6,
and. moreover. C,, > 0 for ¢ > ,. The graph of { as a function of D, at given D, = D, in
this state takes the form visualized in Fig. 2(b). with the linear range corresponding to total
loading [Fig. 2(a)]. Infinitely many solutions in velocities can be constructed at # <™. In
particular. an arbitrary pair (D, D{") taken from the linear range of U (including the
limits D; and D at which ¢ = #,). such that DY’ > D, > D\, defines a piecewise uniform
solution ¢, € 7 which describes incipient necking in a single band of width 4. Such solutions
are obtained by assuming ) (x,) = D" for0 <x < handr.(x)) = D forb < x, < /. with

D =Dy /
D(\N - D(‘m

)l

(15)

in order to satisty eqn (9). The static condition (10) is evidently satisfied.

Under the assumptions specified. all the solutions satisfy eqn (12) az the critical state
# ™. In the typical circumstances indicated in Appendix B. the solution ¢ which satisfies
the condition (12) just hevond #<™ (if it exists) must additionally satisfy ¢ = 0, at #°™" at
every point of differentiability of +'}. i.e. not only within the incipient necking band but also
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Fig. 2. (a) Strain rates and angles associated with the constitutive cone of total loading. (b) Schematic
graph of the plane stress constitutive potential (" vs D, for fixed D, at the critical stage [eqn (14)].
(¢) The graph bevond the critical stage.

outside the band, so that DV = D, . D' = D, . On determining these values from trig-
onometric relationships obtained with the help of Fig. 2(a). substituting into eqn (15) and
rearranging. we arrive at the following compact formula :

! = 1v‘-m“j‘-)/ it b >0, (16)
tan ¢

for the incipient width of the necking band in a perfect infinitely thin sheet of finite in-plane

dimension /. The assumption about tformation of just one band under the adopted boundary

conditions is supported by the analysis of neck formation in a sheet of finite thickness; cf.

Section 4. If this assumption is dropped then the number and particular widths of necking
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bands become undefined but their rora/ incipient width can still be determined from eqn
(16).

3.3, Post-critical beliaviour

Without loss of generality we take the prescribed overall logarithmic strain in the x,
direction. ¢, = _|' d/ 7. as a time measure identified with 1. so that D, = 1. The analysis shows
that two zones (M1 and («) of uniform straining can still exist in the post-critical range but
being separated trom cach othert by an evolving transitory zone of non-uniform straining.
A peculiar feature of the present problem is that along any post-critical path (stable or not)
involving 1 homogeneous zone where the graph of {7 vs D, has the qualitative form shown
in Fig. 2t¢) or (b). there exist infinitely many velocity solutions at every instant. The
indeterminacy is ugain removed with the help of the stability condition (12). In the examples
examined in this paper. the post-critical U-graph in zone (h) is non-convex as in Fig. 2(c).
and the solution path corresponding to a necking band of a fixed nominal width (i.e. when
the band boundary is not moving with respect to the material) has been found to be
unstable. A solution corresponding to the nominal width of zone () decreasing in time has
been searched for. At the moving end-point ¥ of zone (b) (0 < x| <b) the strain rate
(but not /1 sutlers a jump from the value DY in zone (h) to D, say. such that

]

SOy Dy = SaD Dy, (17)

To sausty eqn (12 at both sides of the discontinuity point. we must also have
ADTDYIDy =0 (18)

at any mstant: this i~ the additonal equation derived from the path stability requirement
feqn (11y].

The two unknowns: D (). Dy (. and thus the deformation history in zone (b), can
now be determined from cgns ¢17) and (18) without any reference to deformation in other
parts of the sheet. Once this has been done. the function DY (1) in zone («) can be determined
from egn (10) and then A7) can be found from ¢gn {13). The transition to localized necking
(D" — + s and » = Oy is accompanied by approaching the limit of stability of equilibrium.

[T a small impertecuon is introduced as in the MK-approach, then the above analysis
sull applies to the initiadly homogeneous part of the sheet outside the weakened zone. The
localized necking 1 the weakened zone can occur before b calculated as above falls to zero
but the difference should tend to zero with the vanishing magnitude of imperfection ; this
1s confirmed below in examples.

340 Examples

The cquations governme the stram development in zones () and (@) have been solved
numerically by emploving an incremental procedure. A tinite strain version of the J; corner
theory (Christoffersen and Hutchinson. 1979) has been used as an approximation? of the
incrementally non-linear plastic response of the material at the current vertex point on the
vield surface. Immediately bevond the critical point the graph of ' vs D, becomes non-
convex. and Lo satsfy eqn (12) the strain rates D and D™ must leave the total loading
cone where the moduli are assumed 1o be those of the deformation theory of plasticity. In
the calculutions performed. the solution with a fixed nominal width of the necking band
violated condition (12) 1 zone thy while the solution determined with the help of eqns (17)
and (18) was tound Lo be aceeptable.

o tuct the ordor b appedarance of different zones along the vi-axis 18 not essential here. The order has
been chosen te represent a solution with one necking band. obtained m the mit as a finite sheet thickness tends
to zero

SAS mdicated oA ppendin A this approsimation s not Futh satistactony
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Fig. 3. Post-critical evolution of (a) strain ratio e,:¢,. (b) strain rate D{. (¢) plane stress modulus

C.,. with overall logarithmic strain ¢,. in zone (b) of concentrating deformation and in zone (a)

outside the necking band, for p = 1. Solid lines correspond to the band width determined from the

energy condition of path stability. and dashed lines to a vanishingly narrow necking band. In all
cases (and for all next figures). N = 0.2, 0, =22.5.6, = 135.0 .

Sample results of the calculations are visualized in Figs 3 and 4. The material par-
ameters and the strain ratio p = 1 are taken as in one of the examples from Christoffersen
and Hutchinson (1979) in order to highlight certain similarities, and also significant differ-
ences between their results and the present ones. We take an exponent of the power
hardening law N = 0.2, an angle of the constitutive cone of total loading 6, = 22.5” and of
elastic unloading 6, = 135 ; for other details see the paper just cited. The elastic moduli
are taken to be sufficiently large (Y oung’s modulus-to-stress ratio > 1000) to give practically
the incompressible rigid-plastic behaviour assumed in the reference. The plots in Fig. 3(a)
show the post-critical strain history in zones (b) and (@) compared with that determined as
in Christoffersen and Hutchinson (1979), but with no imperfection (not computed in the
reference) ; the latter case corresponds to the solution with & = 0 which we reject since it
violates eqn (12). Figure 3(b) shows the significant difference between the strain rate outside
the necking band and the prescribed averaged value D, = 1. The plots of €/} and C{*) (with



Post-critical plasuc detormation 697

0.-1 T T T T
0.3F
by
27 02k
l
0.1+
i
00; i 1 1 I I
0.26 0.27 0.28 0.29 0.30 0.31 0.32

€]

Fig. 4. Relative width of the current necking band. / /. determined from strain-rate distribution.
and of the neck. A, /. determined from thickness distribution. as a function of overall logarithmic
strain é, (for p = 1)

the yield stress as unity) vs ¢, are presented in Fig. 3¢¢). The end points on all curves in Fig.
3. except on that for C which goes beyond the scale of the figure. correspond to the onset
of localized necking in the plane stress idealization.

Figure 4 shows how the relative widths of the necking band. A/, and of the neck, 5y, /.
vary with the overall logarithmic strain ¢,. the former (but not the latter) approaching zero
at the limit of localized necking. The current width of the necking band. A, which cor-
responds to the non-uniformity of strain rate can still be conveniently defined by the
formula (15). the superscripts (¢) and (b) referring to quantities within zones (@) and (b),
respectively. It differs, of course, from the current neck width A, corresponding to the
distribution of sheet thickness. defined by the analogous formula

=
h, = — /. (19)
h(lv] hwm

where /1is the averaged sheet thickness which can be approximately determined, e.g. by using
the incompressibility condition. The incipient width calculated numerically+ practically
coincides with that found from eqn (16) with ¢ determined from eqn (B4) (the relative
difference is less than 0.03%) on account of negligible elastic compliancies.

For the same material parameters as above, the forming limit diagram for proportional
increasing of the overall logarithmic strains é,. &- has been calculated as shown in Fig. 5(a).
The dashed line represents the points of ellipticity loss and coincides with that determined
by Stéren and Rice (1975): however, it corresponds here to the onset of instability of
uniform straining and not necessarily to the onset of localized necking. The onset of
localized necking predicted by the present theory is marked by the solid line and occurs at
a later stage of the non-uniform deformation provided p is not too small. in this computational
case if p > 0.24. Only for smaller values of p does the localized necking occur as soon as
the point of ellipticity loss is reached. since then ¢ < ().

Still for the same data. two alternative forming limit diagrams have been determined
[solid lines in Fig. 5(b)] which correspond to the limit /ocal logarithmic strains in zones («)
or (b) at the onset of localized necking. Between these two lines, there is a whole family of
forming limit curves which are dependent on a point in the transitory zone where the limit
strain is determined. For a major part of the sheet (note that » < /;2) the lower line («) is
relevant. After crossing the Stdren-Rice curve plotted as a dashed line. the local strain
histories for a given p deviate from proportional straining. as depicted in the figure. Hence.

+More precisely. that found by backward extrapolation of the post-critical values, but the difference is
immaterial.
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0.0 v e —L
.0 0.1 0.2 0.3 0.4
b) €z
Fig. 5. Predicted forming limit diagram (a thick solid line) : (a) in proportionally increasing overall
strains .. ¢, . (b) in local strains ¢.. ¢, in zones () and («). Beyond the Stéren--Rice (1975) curve
plotted as a dashed line, local strains become non-uniform and increase non-proportionaily. Thin
solid lines in Fig. 5(b) show particular strain paths for zones {#) or («) up to the onset of localized
necking. for p = 1. 0.8 or 0.6.

the theory predicts that the limit strain outside a final band of localized necking in an
initially perfect sheet subject to proportional overall stretching is in general place-dependent
and is reached on a non-proportional route.

This general conclusion remains valid for a sheet with a local imperfection provided
the imperfection is sufficiently small. To show this, let us imagine, following Marciniak,
that a very narrow band is initially slightly weaker (e.g. thinner) than the remaining
homogeneous part of the sheet. 1f this band is vanishingly narrow then it does not contribute
to the total extension of the sheet. This means that the above calculations of the stress and
deformation history in zones («¢) and (») apply without any changes to the imperfect sheet
outside the weakened band. The calculated stress history outside this band provides the
static condition for S, which. with the kinematical condition for D,, enable us to determine
the deformation history at the weakest point of the whole sheet. The localized necking
oceurs (i.e. the strain rate at that point tends to infinity) when the plane stress modulus €,
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Fig. 6. Moditicanon of the torming it diagram from Frg. Scby tor an imperfect sheet.

at that point fulls to zero - this happens at a positive value of the band width A found from
eqn (15).

The quantitative cftect of the presence of the Marciniak grooves on the local limit
strains is illustrated in Fig. 6. As usual. / denotes the rato of the initial sheet thickness
within and outside the groove. It can be seen that the aforementioned conclusion remains
valid for /' sufficiently close to unity. although the range of limit local strains outside the
groove decreased rapidly with /. For larger imperfections this range shrinks to a single
value since then the critical stage [eqn (14)] 15 not reached in the uniform part of the sheet
up to the onset of localized necking within the groove.

4 SHEET OF FINTTE THICKNESS

In this section the assumption of plane stress is dropped. and we consider the two-
dimensional boundary vialue problem in the (v,. v1) plane, defined in Section 2. The problem
is analogous to the standard problem of plane strain tension. with the difference that the
prescribed strain rate D. in the dircction normal to the (v, vi) plane is now non-zero. As
shown below. this difference is associated with a qualitatively distinct post-critical solution.

In the numerical calculations reported here. the finite strain version of the J- corner
theory of Christoffersen and Hutchinson (1979) has been assumed. with the same material
parameters as in the examples trom Section 3. with the exception (having little influence on
the resuits) that the elastic constants are now taken to have more realistic values (the ratio
of Young's modulus to the minal vield stress being equal to 500. and Poisson’s ratio 0.3).
The finite element method has been emploved by using essentially the same calculation
technique as that applied by Petrvk and Thermann (1992) to the problem of plane strain
tension : the reader 1s reterred to that paper and to the references quoted therein for the
details omitted here.

The calculations were pertormed for an minally perfect rectangular sheet, of initial
dimension ratio 2/, /i, = 100. subject to balanced biaxial stretching (p = 1). The restriction
to deformation symmetric with respect to the mid-planes of the sheet was introduced so
that only one quadrant of the sheet cross-section in the v, v1) plane was actually computed.
The quadrant was divided into 600 « 3 quadriliteral elements. each consisting of four
“crossed™ triangles of constant strain.

The algorithm mmplemented 1 the computer program makes it possible to cross
bifurcation points with automatic rejection of the tunstable) fundamental post-bifurcation
branch (Petryk and Thermann. 1992). During the present caleulations. only one bifurcation
point was found. and the instant and mode of the bifurcation practically coincided with
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Fig. 7. Distribution of (a) thickness stramn ¢, and (b) thickness strain rate D; in a sheet of initial ratio
20 h, = 100 at several stages of balanced biaxial stretching (p = 1, N = 0.2, 6, = 22.5 . 0. = 135.07).

those determined analytically by using the Hill and Hutchinson (1975) approach. The
results presented below thus appear to be independent of the algorithm used to compute
the post-bifurcation branch.

Although the strain-rate field just beyond the bifurcation point has the typical sinus-
oidal form. during subsequent deformation it undergoes rapid redistribution towards that
determined in the preceding section under the plane stress assumption. After an increment
of the overall logarithmic strain by 0.0001 from the bifurcation point, the two zones of
practically constant strain rate are already developed. Figure 7 (a and b) show the dis-
tribution of the thickness strain . = In(/1'h,) and its rate D, at several stages of the post-
critical deformation. It can be seen that the qualitative predictions of the plane stress theory
from Section 3 concerning the evolution of the necking band are in full agreement with the
calculations performed for a sheet of a finite thickness. The latter provide information,
previously lacking, about deformations in the transitory zone.

The quantitative agreement is even more striking. This can be visualized by comparing
the evolution of the width of the necking band (Fig. 8). The width b, corresponding to the
thickness distribution has been determined from eqn (19) with 4'” and A' interpreted as
the minimum and maximum thickness. respectively. The width b corresponds now to the
distribution of the rate of thickness strain and is defined by the formula analogous to eqn
(15):*

+ For an incompressible material and for the strain rate independent of v;. the formulae (15) and (20) define
the same quantity. For the slightly compressible material assumed. the difference exists but is not essential.
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Fig. 8. Relative width of the current necking band. » /. and of the neck. o, [ vs overall logarithmic
strain &,. Solid lines for a finite sheet thickness correspond to the distributions shown in Fig. 7 (a.
b) and dashed lines have been determined by plane stress calculations as in Section 3.
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Note the rapid drop of » and A, from the initial value 0.5 / at bifurcation to the level
predicted by plane stress calculations: the broken lines show the respective band width
evolution determined as in Section 3 but for the changed elasticity constants. As expected,
the curves start to diverge rapidly when the width of the necking band becomes of the order
of the sheet thickness so that the assumption of plane stress is no longer acceptable.

With the exception of this last stage of the transitory process, the actual finite value of
sheet thickness. provided small in comparison with /. has little influence on the numerical
results. Just the fact that the sheet is treated as three-dimensional changes the mathematical
character of the post-critical incremental problem since at least the incipient necking is not
associated with the loss of ellipticity of the governing equations. The post-critical solution
can thus be determined without the need for introducing any extra condition. It may be
remarked, however, that the particular form of the solution illustrated in Fig. 7 is better
explained by the plane stress theory for an infinitely thin sheet.

SO DISCUSSION AND CONCLUSIONS

The theoretical and numerical results presented above can be discussed from at least
two different points of view: of a general theory of post-bifurcation behaviour in ela-
stoplastic solids, and of the mechanics of sheet metul torming. Let us begin with the former.

The post-critical deformation of a biaxially stretched thin sheet of an incrementally
non-linear material has been examined in two different ways. First, the plane stress ide-
alization was assumed and the resulting indeterminacy of post-critical behaviour was
removed by imposing an additional requirement ot stability of the deformation process in
the energy sense {eqn (11)]. Second. the assumption of plane stress was relaxed by intro-
ducing a finite sheet thickness. and then the posi-critical deformation process could be
determined in a more straightforward manner without any stability considerations (but at
the cost of much greater computational effort). The results of both approaches have turned
out to be in excellent agreement with each other which might not be obvious in advance.
The agreement may be treated as an argument supporting the previous justification of the
energy criterion of stability ot a deformation path (Petryk. 1991).

The obtained interpretation of the point of ellipticity loss can also be of interest for
the theory of post-bifurcation behaviour. It has been found that for incrementally non-
linear solids the loss of ellipticity of the lineanized equations of continuing equilibrium
should not be identified with the onset of tully localized deformation. It marks the onset of
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instability of uniform straining but the post-critical deformations can concentrate gradually
as further external displacements are applied. The “quasi-stable™ process of non-uniform
deformation can continue until another critical point—the loss of stability of equilibrium
or (not studied here) of surface or bulk material stability—is reached.

Before proceeding to the discussion of the mechanism of formation of a localized neck
in a metal sheet. it should be pointed out that the influence of factors such as anisotropy,
strain-rate sensitivity, possibility of fracture or of shear band instability has been disre-
garded. The material model used in calculations is not fully satisfactory, and the boundary
conditions also do not correspond closely to the experimental techniques used so far.
Therefore. the conclusions have to be treated with due caution.

In previous studies it was usually assumed that strain localization in a plastically
stretched sheet starts and develops within a narrow band containing a fixed portion of the
material. The present work shows that that assumption may be incorrect if we take into
account the incremental non-linearity of the material in accord with micromechanical
theories of plasticity of polycrystalline metals. The width of the zone where the strain is
concentrating can be initially of the order of the in-plane dimension and can decrease
gradually in time until a localized neck is eventually formed. Accordingly. the limit strain
outside the final band of localized necking is in general place-dependent and is reached on
a non-proportional route, even for an initially perfect sheet subject to proportional overall
stretching. The conclusion remains valid for a sheet with a local imperfection provided the
imperfection is sufticiently small. The actual width of a necking band at early stages of the
neck formation need not be determined by a small initial imperfection or by the sheet
thickness. Rather. we have found that the band width evolution in an initially perfect sheet
results from interaction of various material parameters, including those characterizing its
incremental non-linearity assoctated with o vertex on the vield surface. From the point of
view of predicting the sheet behaviour this is rather unfortunate since such material par-
ameters are difticult to measure experimentally. On the other hand, a possibility is offered
to determine such parameters indirectly. by precise measurements of the post-critical behav-
iour of the sheet. For instance, the formula (16) might be used to determine ;.

In view of the sensitivity of the post-critical behaviour to material parameters, bound-
ary conditions and sheet imperfections. it 1s at present difficult to draw any definite con-
clusions from comparison with the available experimental data [cf. e.g. Marciniak and
Kuczynski (1967) ; Azrin and Backofen (1970) : Painter and Pearce (1974) : Ghosh, (1978)],
but at least no contradiction has been tound so far. The present approach may be treated
as an extension of the Storen—Rice (1975) theory. obtained by incorporating the analysis
of post-critical behaviour, which leads to the unchanged predictions if ¢ < 6. The relative
delay of the onset of localized necking predicted for ¢ > 6, (cf. Fig. 5) gives a possibility
of obtaining a better agreement with experimental forming limit diagrams in the cases
where the Stéren—Rice curve is found to be insufficiently steep.
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APPENDIN A

Consider the problem of in-plane biaxial stretching of a sheet under the plane stress assumption at some
stage of uniform deformation when the sheet is homogeneous and orthotropic with respect to {x,. x:) axes. We
assume that the sheet currently occupies a rectangular domain G i the (. v.) plane as shown in Fig. 1. and that
along the boundary ¢G of G the in-plane normal velocity and zero shear traction rate are prescribed.

Coefficients of the equations of continuing in-plane equilibrium expressed in terms of in-plane velocities
(X1, X3), 20x). Xs) under plane stress conditions [cf. egn (8)] are denoted by €. i j, k. =1, 2. The plane stress
moduli (:,,‘, are said to be strongly elliptic if

Gint

Cowa bh =0 for every non-zero a,be R (A1}

The fo[lowing moditied version of van Hove's theorem (van Hove. 1947) can be proved (Ryzhak. 1991).% [t
constant moduli C,; are strongiy elliptic and orthotropic with respect to the axes (x,. x,) then

Con,one dd -0 (A2)

for every non-zero continuous field w: G - R of a square integrable gradient and of zero normal component on
¢G. Here. d4 is an infinitesimal area element in the (v, v.) plane. and (), denotes the partial derivative with
respect to x,. with the summation convention for repeated indices. By the well-known argument [cf. Hill (1978)].
eqn (A2) with constant €, ensures uniqueness of a solution to the respective linear boundary value problem for
velocities.

The actual problem for velocities s non-linear since the moduli € . obtained from eqn (4) depend on the
strain-rate direction. Uniqueness can still be concluded provided we have additional information about the
material model. typically in the form of a constitutive inequality. This can be the relative convesity property (Hill.
1959, 1978). or the less restrictive mequality derived from micromechanical considerations (Petryk. 1989). For
the version of the J. corner theory of plasticity (Christoffersen and Hutchimson. 1979) applied in this paper. it can
be shown (Petrvk. 1989, Section §) that the latter inequality it saustied along the tundamental path of uniform
proportional stretching. The associated tangent moduli €, from the total loading cone are determined as in the
deformation theory of plasticity and are orthotropic with respect o the axes (v,..x,). By combining the above
statements. we arrive at the conclusion that during proportional stretching of a homogeneous and initially isotropic
sheet, the uniform solution to the boundary value problem under consideration is unique so long as (), are
strongly elliptic.

Numerical analysis has revealed (Storen and Rice. 1975y that tor 05 p < 1 the moduli Coup of the J
deformation theory cease to be strongly eliptic when ., = 0. 1.c. when the critical stage [eqn (14)] is reached.
If p < 1 then at the critical stage we stil] have eqn (A1) when oo = 0 or b= (1 and eqn (Al) becomes an equality
for «uy = h. = 0. Re-examination of the proot shows that egn A2y s still valid at this instant with the exception
that the equality is obtained when | is the only non-zero component ot w, 4./ = 1. 2. Hence. any bifurcation
mode at the critical stage [egn (14}] must be of that torm and s thus :ndependent of x.; this motivated the
selection of the problem for study as formulated in Section 2

To be consistent with the micromechanical analysis. the tota. loading cone or 1ts boundary should contain
the current strain rate at every regufur point on a non-proportional straining path (Petryk, 1989, p. 279). This is
not so for the J, corner theory of plasticity used here. which may e regarded as an unsatisfactory feature of the

T Another and quite different proot of the moditied theorent s omitted here
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model. This may not be essential in calculations of smooth deformation paths but becomes more important when
multiple bifurcations occur as in the plane stress example examined in the present work.

APPENDIX B
We provide below some details of the analysis from Section 3 along with the proofs of the statements
formulated there.
For egn (12) 1o hold. the inequality hus to be satisfied in particular for D, —+ + % and for D, —» D{. On

substituting (= :‘.(:,A D D, and using the continuity and homogeneity of the constitutive law. we obtain
Co(+1.0)=20  at any x,€(0,/) (B1)
Co Dy =0 atany x,€(0,0) (B2)

as prerequisites for eqn (12). provided. of course. that the modulus C), is well defined at these arguments.

The inequalities in eqns (12). (B1) and (B2) can be regarded as one-dimensional plane stress specifications
for the sheet material, of the conditions of material stability discussed by Petryk (1992). Accordingly, the condition
(B1} is interpreted as necessary for (dynamic) stability of equilibrium, at any boundary conditions. If the angle
¢ between the plane strain rate D involved in eqn (B1) and D is smaller than 6, then failure of eqn (B2) implies
failure of egn (B1). In tvpical circumstances where €, is decreasing in time at any value of D, > D,, this gives no
possibility of satisfying (Bl) just beyond #*" This justifies the statement about instability of post-critical
equilibrium states in the case ¢ < f,. For example. this is so for the classical elasto-plastic models for any value
of p. For the rigid plastic version of the J, corner theory (Christoffersen and Hutchinson, 1979) with 8, = 22.5%,
this 1s so for p < 0.23951f £, £ = 0.2 and for p <0 0.4070 it £/E, = 0.5. For negligible elastic compliancies, 8, is
identified with an angle of the total loading cone in stress-rate space. )

If ¢ >0, at #" then usually (ﬂ,( +1.0) = 0 at and just beyond #*". From C,,(+1,0) > Ognd from
continuity and homogeneity of U it follows that U(D,. D,) = + % as {D)| - x. On the other hand. C,,(D,, D,)
usually becomes negative on the fundamental path just beyond #°™ so that the graph of U as a function of D, at
fixed D, > (0 becomes non-convex and takes the torm shown qualitatively in Fig. 2(c), possibly with more than
two inflection points. B

Consider any post-critical solution path involving a homogeneous zone where the graph of U vs D, has the
qualitative form shown in Fig. 2(b) or (¢). In analogy with the critical instant corresponding to Fig. 2(b), a family
ol secondary solutions can be constructed which are piecewise uniform in that zone and are generated by a pair
of strain rates such that the respective stress rates. i.e. the slopes of the U-graph. are equal to each other.t The
non-convexity of the {-graph implies the existence of infinitely many such pairs with their members taken from
vicinities of the tangent points of a supporting straight line [the dashed line in Fig. 2(c)]. This demonstrates the
existence of infinitely many velocity solutions at every point on any path under consideration. Along the fun-
damental post-critical path without necking. the secondary solutions are. moreover, energetically preferable to
the uniform mode. in the sense of violation of eqn (11). This is the interpretation of the path instability in the
energy sense for the present problem [cf. Petryk (1991.1992)] : such a path is regarded as unrealizable in a physical
system. Similarly. quasi-static bifurcation within a single and vanishingly narrow band without affecting the
deformation path elsewhere violates the stability requirement outside the band and is regarded as unrealizable.

To avoid such instability. we must exclude (C (D" D))" < 0 everywhere at the critical instant. However,
we can expect (C (D, D.))" < 0 for every D, satistying ¢ < 8, provided 8, is not too large ; for instance, this is
ensured for the total loading moduli of /. detformation theory with a power hardening law when 6, < min
(.= 2—¢), as can be shown by algebraic manipulations of the formulae. If this is so then we must have ¢ = 8,
atevery point of differentiability of ¢{. i.e. DV(x.) is equal to either D; or DT,

To illustrate better the meaning of eqn (16), suppose that the material obeys the J; corner theory of plasticity,
developed by Christoffersen and Hutchinson (1979). In the limit when elastic compliancies are neglected, the angle
@ 1s determined by the formula (4.5) in the paper just cited which for D, > 0 can be reduced to

. . lpD, ”Ez\
tang = (3 £ S

(B3)

where £, and £ are the tangent and secant modulus. respectively, £ > £, > 0. In particular. the angle ¢ between
D and D is detined by

1

tand = (3K E) - 5T (B4)
24y

For a power hardening law with an exponent ¥ we have £ £ = 1 N,

On determining the values D. and D; trom egn (B3} for ¢ = 0, substituting them into eqn (15} and using
(B4). we arrive again at eqn (16).

The equations (17) and (18) governing the necking band evolution represent the classical Weierstrass—
Erdmann corner conditions of the calculus of variations. specified for the minimization problem (11); note that
such D' and DYy correspond to the tangent points of the U-graph to a common straight line [the dashed line in
Fig. 2(¢)]. The post-critical solution is acceptable if the approximate? consistency condition b < D' is satisfied
and it egn (12) is not violated in zones («) and (h). The solution can be continued unless » decreases

*In the case corresponding to Fig. 2(¢). the mean strain rate within that zone is not given but is to be found
trom the condition [egn (10)] of continuing equilibrium.

3 The actual consistency condition is that the nominal width of zone (b) is decreasing. However, this width
cannot be determined from the equations above.
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eventually to zero. which on account of eqn (15) is necessarily accompanied by DV — « so that the transition to
localized necking is obtained. From egns (10) and (7) we find that in the limit we must have C, (1, p". # ") = €,
(DY Da.#"y = 0as p" = D, D" — (0, so that the transition to localized necking is accompanied by approach-
ing the limit of stabilitv of equilibrium.

The case when the nominal width of 7one () 1s decreasing im tme can be examined in an analogous munner.



